General linear models extend linear regression by allowing the dependent variable to follow different distributions and linking it to predictors through various functions.

GLMs consist of the following components:

  • random component: distribution of the dependent variables
  • systematic component: a linear combo of the predictor variables
  • link function: connect random and systematic components by linking the mean to the linear predictors

Examples:

  • linear regression
    • dependent variable ~ normal
    • identity link function:
  • logistic regression
    • dependent variable ~ Bernoulli
    • logit link function:
  • probit regression
    • dependent variable ~ Bernoulli
    • probit link function:
  • count data models
    • dependent variable ~ poisson, negative binomial, etc.
    • log link function